资源类型

期刊论文 829

会议视频 37

会议专题 1

年份

2024 2

2023 149

2022 148

2021 101

2020 50

2019 52

2018 38

2017 34

2016 34

2015 30

2014 21

2013 15

2012 32

2011 32

2010 23

2009 19

2008 27

2007 26

2006 3

2005 3

展开 ︾

关键词

碳中和 25

能源 10

二氧化碳 6

低碳经济 6

环境 6

低碳发展 4

低碳 3

天然气 3

CCS 2

三相界面 2

产业结构 2

光催化 2

化学吸收 2

化石能源 2

协同效应 2

固体氧化物燃料电池 2

土地利用变化 2

碳基燃料 2

碳达峰 2

展开 ︾

检索范围:

排序: 展示方式:

Concurrent adsorption and reduction of chromium(VI) to chromium(III) using nitrogen-doped porous carbon

《环境科学与工程前沿(英文)》 2022年 第16卷 第5期 doi: 10.1007/s11783-021-1491-6

摘要:

• A high-efficiency N-doped porous carbon adsorbent for Cr(VI) was synthesized.

关键词: Chromium(VI)     Nitrogen-doped porous carbon     Adsorption     Reduction     Loofah sponge    

Size-controllable synthesis of monodispersed nitrogen-doped carbon nanospheres from polydopamine for

《化学科学与工程前沿(英文)》 2023年 第17卷 第11期   页码 1788-1800 doi: 10.1007/s11705-023-2326-8

摘要: Monodispersed nitrogen-doped carbon nanospheres with tunable particle size (100–230 nm) were synthesized via self-polymerization of biochemical dopamine in the presence of hexamethylenetetramine as a buffer and F127 as a size controlling agent. Hexamethylenetetramine can mildly release NH3, which in turn initiates the polymerization reaction of dopamine. The carbon nanospheres obtained exhibited a significant energy storage capability of 265 F·g–1 at 0.5 A·g–1 and high-rate performance of 82% in 6 mol·L–1 KOH (20 A·g–1), which could be attributed to the presence of abundant micro-mesoporous structure, doped nitrogen functional groups and the small particle size. Moreover, the fabricated symmetric supercapacitor device displayed a high stability of 94% after 5000 cycles, revealing the considerable potential of carbon nanospheres as electrode materials for energy storage.

关键词: carbon nanospheres     size-controlled     nitrogen-doped     high-rate     supercapacitors    

Catalytic fast pyrolysis of walnut shell for alkylphenols production with nitrogen-doped activated carbon

Shanwei Ma, Hang Li, Guan Zhang, Tahir Iqbal, Kai Li, Qiang Lu

《环境科学与工程前沿(英文)》 2021年 第15卷 第2期 doi: 10.1007/s11783-020-1317-y

摘要: Abstract • N-doped activated carbon was prepared for catalytic pyrolysis of walnut shell. • Alkylphenols were selectively produced from catalytic pyrolysis process. • The alkylphenols yield increased by 8.5 times under the optimal conditions. • Formation mechanism of alkylphenols was proposed. Alkylphenols are a group of valuable phenolic compounds that can be derived from lignocellulosic biomass. In this study, three activated carbons (ACs) were prepared for catalytic fast pyrolysis (CFP) of walnut shell to produce alkylphenols, including nitrogen-doped walnut shell-derived activated carbon (N/WSAC), nitrogen-doped rice husk-derived activated carbon (N/RHAC) and walnut shell-derived activated carbon (WSAC). Pyrolysis-gas chromatography/mass spectrometry (Py-GC/MS) experiments were carried out to reveal the influences of AC type, pyrolytic temperature, and AC-to-walnut shell (AC-to-WS) ratio on the product distributions. Results showed that with nitrogen doping, the N/WSAC possessed stronger capability than WSAC toward the alkylphenols production, and moreover, the N/WSAC also exhibited better effects than N/RHAC to prepare alkylphenols. Under the catalysis of N/WSAC, yields of alkylphenols were significantly increased, especially phenol, cresol and 4-ethylphenol. As the increase of pyrolytic temperature, the alkylphenols yield first increased and then decreased, while high selectivity could be obtained at low pyrolytic temperatures. Such a trend was also observed as the AC-to-WS ratio continuously increased. The alkylphenols production achieved a maximal yield of 44.19 mg/g with the corresponding selectivity of 34.7% at the pyrolytic temperature of 400°C and AC-to-WS ratio of 3, compared with those of only 4.67 mg/g and 6.1% without catalyst. In addition, the possible formation mechanism of alkylphenols was also proposed with the catalysis of N/WSAC.

关键词: Pyrolysis     Walnut shell     Alkylphenols     Nitrogen-doped activated carbon    

Boron and nitrogen co-doped porous carbon derived from sodium alginate enhanced capacitive deionization

《化学科学与工程前沿(英文)》 2023年 第17卷 第12期   页码 2014-2024 doi: 10.1007/s11705-023-2346-4

摘要: Capacitive deionization can alleviate water shortage and water environmental pollution, but performances are greatly determined by the electrochemical and desalination properties of its electrode materials. In this work, B and N co-doped porous carbon with micro-mesoporous structures is derived from sodium alginate by a carbonization, activation, and hydrothermal doping process, which exhibits large specific surface area (2587 m2·g‒1) and high specific capacitance (190.7 F·g‒1) for adsorption of salt ions and heavy metal ions. Furthermore, the materials provide a desalination capacity of 26.9 mg·g−1 at 1.2 V in 500 mg·L‒1 NaCl solution as well as a high removal capacity (239.6 mg·g‒1) and adsorption rate (7.99 mg·g‒1·min‒1) for Pb2+ with an excellent cycle stability. This work can pave the way to design low-cost porous carbon with high-performances for removal of salt ions and heavy metal ions.

关键词: capacitance deionization     porous carbon     B/N co-doping     heavy metal ions     water purification    

Efficient CO

Yanxia Wang, Xiude Hu, Tuo Guo, Jian Hao, Chongdian Si, Qingjie Guo

《化学科学与工程前沿(英文)》 2021年 第15卷 第3期   页码 493-504 doi: 10.1007/s11705-020-1967-0

摘要: In this work, nitrogen-doped porous carbons (NACs) were fabricated as an adsorbent by urea modification and KOH activation. The CO adsorption mechanism for the NACs was then explored. The NACs are found to present a large specific surface area (1920.72–3078.99 m ·g ) and high micropore percentage (61.60%–76.23%). Under a pressure of 1 bar, sample NAC-650-650 shows the highest CO adsorption capacity up to 5.96 and 3.92 mmol·g at 0 and 25 °C, respectively. In addition, the CO /N selectivity of NAC-650-650 is 79.93, much higher than the value of 49.77 obtained for the nonnitrogen-doped carbon AC-650-650. The CO adsorption capacity of the NAC-650-650 sample maintains over 97% after ten cycles. Analysis of the results show that the CO capacity of the NACs has a linear correlation ( = 0.9633) with the cumulative pore volume for a pore size less than 1.02 nm. The presence of nitrogen and oxygen enhances the CO /N selectivity, and pyrrole-N and hydroxy groups contribute more to the CO adsorption. Fourier transform infrared spectra analysis indicates that CO is adsorbed onto the NACs as a gas. Furthermore, the physical adsorption mechanism is confirmed by adsorption kinetic models and the isosteric heat, and it is found to be controlled by CO diffusion. The CO adsorption kinetics for NACs at room temperature and in pure CO is in accordance with the pseudo-first-order model and Avramís fractional-order kinetic model.

关键词: porous carbon     CO2 adsorption     nitrogen-doped     adsorption mechanism     kinetics    

Efficient removal of Cr(VI) and Pb(II) from aqueous solution by magnetic nitrogen-doped carbon

Wanyue Liu, Xiaoqin Liu, Jinming Chang, Feng Jiang, Shishi Pang, Hejun Gao, Yunwen Liao, Sheng Yu

《化学科学与工程前沿(英文)》 2021年 第15卷 第5期   页码 1185-1196 doi: 10.1007/s11705-020-2032-8

摘要: The magnetic nitrogen-doped carbon (MNC) was prepared from polypyrrole by a simple high temperature calcination process in this paper. The structure and properties of MNC were analyzed by scanning electron microscope, Fourier transform infrared spectroscopy, X-ray diffraction, Brunner Emmet Teller, vibrating sample magnetometer, and X-ray photoelectron spectroscopy. The capacity of MNC to adsorb Cr(VI) and Pb(II) was evaluated. The effects of the initial pH, dosage, concentration and temperature on the adsorption capacity of MNC were measured. MNC had a large specific surface area and a special porous structure. Its nitrogen and carbon sources were rich, and the ratio of carbon to nitrogen was fixed. The maximum Cr(VI)-adsorption capacity and maximum Pb(II) adsorption capacity of MNC could reach 456.63 and 507.13 mg∙g at 318 K, respectively. The pseudo-second-order model was used to describe the adsorption kinetics of MNC, and the Freundlich model was employed to discuss its isotherms. The adsorption process was affected by the electrostatic force, the reducing reaction, pores and chelation. The results of this study suggest that MNC is a material with superior performance, and is very easily regenerated, reused, and separated in the adsorption process.

关键词: magnetic     nitrogen-doped carbon     adsorption     Cr(VI)     Pb(II)    

Construction of nitrogen-doped carbon cladding LiMnO film electrode with enhanced stability for electrochemically

《化学科学与工程前沿(英文)》 2023年 第17卷 第12期   页码 2050-2060 doi: 10.1007/s11705-023-2343-7

摘要: Reducing the dissolution of Mn from LiMn2O4 (LMO) and enhancing the stability of film electrodes are critical and challenging for Li+ ions selective extraction via electrochemically switched ion exchange technology. In this work, we prepared a nitrogen-doped carbon cladding LMO (C-N@LMO) by polymerization of polypyrrole and high-temperature annealing in the N2 gas to achieve the above purpose. The modified C-N@LMO film electrode exhibited lower Mn dissolution and better cyclic stability than the LMO film electrode. The dissolution ratio of Mn from the C-N@LMO film electrode decreased by 42% compared to the LMO film electrode after 10 cycles. The cladding layer not only acted as a protective layer but also functioned as a conductive shell, accelerating the migration rate of Li+ ions. The intercalation equilibrium time of the C-N@LMO film electrode reached within an hour during the extraction of Li+ ions, which was 33% less compared to the pure LMO film electrode. Meanwhile, the C-N@LMO film electrode retained evident selectivity toward Li+ ions, and the separation factor was 118.38 for Li+ toward Mg2+ in simulated brine. Therefore, the C-N@LMO film electrode would be a promising candidate for the recovery of Li+ ions from salt lakes.

关键词: LiMn2O4     lithium extraction     surface coating     cyclic stability     Mn dissolution    

Efficient photodegradation of phenol assisted by persulfate under visible light irradiation via a nitrogen-dopedtitanium-carbon composite

Yan Cui, Zequan Zeng, Jianfeng Zheng, Zhanggen Huang, Jieyang Yang

《化学科学与工程前沿(英文)》 2021年 第15卷 第5期   页码 1125-1133 doi: 10.1007/s11705-020-2012-z

摘要: To realize the utilization of visible light and improve the photocatalytic efficiency of organic pollutant degradation in wastewater, a nitrogen-doped titanium-carbon composite (N-TiO /AC) prepared by sol-gel methods was applied in the photodegradation of phenol assisted by persulfate under visible light irradiation (named N-TiO /AC/PS/VIS). The results show that a synergistic effect exists between visible-light photocatalysis and persulfate activation. Compared with TiO /PS/VIS, the phenol degradation rate was found to be observably improved by 65% in the N-TiO /AC/PS/VIS system. This significant increase in degradation rate was mainly attributed to the following two factors: 1) The N and C doping can change the crystal structure of TiO , which extends the TiO absorption wavelength range to the visible light region. 2) As an electron acceptor, PS can not only prevent electrons and holes from recombining with each other but can also generate strong oxidizing radicals such as ∙SO and ∙OH to accelerate the reaction dynamics. The process of phenol degradation was found to be consistent with the Langmuir pseudo-first-order kinetic model with an apparent rate constant of 1.73 min . The N-TiO /AC/PS/VIS process was proven to be a facile method for pollutant degradation with high pH adaptability, excellent visible-light utilization and good application prospects.

关键词: N-TiO2/AC     visible light     photocatalysis     persulfate activation     phenol    

Nitrogen-doped carbon black supported Pd nanoparticles as an effective catalyst for formic acid electro-oxidation

Na SUN, Minglei WANG, Jinfa CHANG, Junjie GE, Wei XING, Guangjie SHAO

《能源前沿(英文)》 2017年 第11卷 第3期   页码 310-317 doi: 10.1007/s11708-017-0491-5

摘要: Pd nanoparticles supported on nitrogen doped carbon black (Vulcan XC-72R) with two different levels of doping were prepared by the microwave-assisted ethylene glycol reduction process and used as catalyst for the formic acid electro-oxidation (FAEO). The results indicate that the different nitrogen doping contents in Pd/N-C catalysts have a significant effect on the performance of FAEO. A higher N content facilitates the uniform dispersion of Pd nanoparticles on carbon black with narrow particle size distribution. Furthermore, the electrochemical results show that the catalyst with a higher N-doping content possesses a higher catalytic activity and a long-term stability for FAEO. The peak current density of the Pd/N-C (high) catalyst is 1.27 and 2.31 times that of the Pd/N-C (low) and homemade Pd/C-H catalyst. The present paper may provide a simple method for preparation of high-performance anode catalyst for direct formic acid fuel cells (DFAFCs).

关键词: formic acid electro-oxidation     nitrogen doped     oxidized carbon     nitrogen content    

Ultrafine Fe-modulated Ni nanoparticles embedded within nitrogen-doped carbon from Zr-MOFs-confined conversion

《化学科学与工程前沿(英文)》 2022年 第16卷 第7期   页码 1114-1124 doi: 10.1007/s11705-021-2087-1

摘要: Improvement of the low-cost transition metal electrocatalyst used in sluggish oxygen evolution reaction is a significant but challenging problem. In this study, ultrafine Fe-modulated Ni nanoparticles embedded in a porous Ni-doped carbon matrix were produced by the pyrolysis of zirconium metal-organic-frameworks, in which 2,2′-bipyridine-5,5′-dicarboxylate operating as a ligand can coordinate with Ni2+ and Fe3+. This strategy allows formation of Fe-modulated Ni nanoparticles with a uniform dimension of about 2 nm which can be ascribed to the spatial blocking effect of ZrO2. This unique catalyst displays an efficient oxygen evolution reaction electrocatalytic activity with a low overpotential of 372 mV at 10 mA·cm–2 and a small Tafel slope of 84.4 mV·dec–1 in alkaline media. More importantly, it shows superior durability and structural stability after 43 h in a chronoamperometry test. Meanwhile, it shows excellent cycling stability during 4000 cyclic voltammetry cycles. This research offers a new insight into the construction of uniform nanoscale transition metals and their alloys as highly efficient and durable electrocatalysts.

关键词: metal-organic framework     pyrolysis     ultrafine     Fe-modulated Ni nanoparticles     oxygen evolution reaction    

Nitrogen-doped graphene approach to enhance the performance of a membraneless enzymatic biofuel cell

Alireza AHMADIAN YAZDI, Jie XU

《能源前沿(英文)》 2018年 第12卷 第2期   页码 233-238 doi: 10.1007/s11708-018-0529-3

摘要: Heteroatom-doping of pristine graphene is an effective route for tailoring new characteristics in terms of catalytic performance which opens up potentials for new applications in energy conversion and storage devices. Nitrogen-doped graphene (N-graphene), for instance, has shown excellent performance in many electrochemical systems involving oxygen reduction reaction (ORR), and more recently glucose oxidation. Owing to the excellent sensitivity of N-graphene, the development of highly sensitive and fast-response enzymatic biosensors is made possible. However, a question that needs to be addressed is whether or not improving the anodic response to glucose detection leads to a higher overall performance of enzymatic biofuel cell (eBFC). Thus, here we first synthesized N-graphene via a catalyst-free single-step thermal process, and made use of it as the biocatalyst support in a membraneless eBFC to identify its role in altering the performance characteristics. Our findings demonstrate that the electron accepting nitrogen sites in the graphene structure enhances the electron transfer efficiency between the mediator (redox polymer), redox active site of the enzymes, and electrode surface. Moreover, the best performance in terms of power output and current density of eBFCs was observed when the bioanode was modified with highly doped N-graphene.

关键词: enzymatic fuel cell     nitrogen-doped graphene     reduced graphene oxide     catalyst-free synthesis    

of halogenated nitrobenzenes over metal–organic-framework-derived ultra-dispersed Ni stabilized by N-dopedcarbon nanoneedles

《化学科学与工程前沿(英文)》 2022年 第16卷 第12期   页码 1782-1792 doi: 10.1007/s11705-022-2220-9

摘要: Ultra-dispersed Ni nanoparticles (7.5 nm) on nitrogen-doped carbon nanoneedles (Ni@NCNs) were prepared by simple pyrolysis of Ni-based metal–organic-framework for selective hydrogenation of halogenated nitrobenzenes to corresponding anilines. Two different crystallization methods (stirring and static) were compared and the optimal pyrolysis temperature was explored. Ni@NCNs were systematically characterized by wide analytical techniques. In the hydrogenation of p-chloronitrobenzene, Ni@NCNs-600 (pyrolyzed at 600 °C) exhibited extraordinarily high performance with 77.9 h–1 catalytic productivity and > 99% p-chloroaniline selectivity at full p-chloronitrobenzene conversion under mild conditions (90 °C, 1.5 MPa H2), showing obvious superiority compared with reported Ni-based catalysts. Notably, the reaction smoothly proceeded at room temperature with full conversion and > 99% selectivity. Moreover, Ni@NCNs-600 afforded good tolerance to various nitroarenes substituted by sensitive groups (halogen, nitrile, keto, carboxylic, etc.), and could be easily recycled by magnetic separation and reused for 5 times without deactivation. The adsorption tests showed that the preferential adsorption of –NO2 on the catalyst can restrain the dehalogenation of p-chloronitrobenzene, thus achieving high p-chloroaniline selectivity. While the high activity can be attributed to high Ni dispersion, special morphology, and rich pore structure of the catalyst.

关键词: halogenated nitrobenzenes     room-temperature hydrogenation     Ni nanoparticles     nitrogen-doped carbon nanoneedles     metal–organic-framework    

Carbon-doped surface unsaturated sulfur enriched CoS@rGO aerogel pseudocapacitive anode and biomass-derivedporous carbon cathode for advanced lithium-ion capacitors

《化学科学与工程前沿(英文)》 2021年 第15卷 第6期   页码 1500-1513 doi: 10.1007/s11705-021-2086-2

摘要: As a hybrid energy storage device of lithium-ion batteries and supercapacitors, lithium-ion capacitors have the potential to meet the demanding needs of energy storage equipment with both high power and energy density. In this work, to solve the obstacle to the application of lithium-ion capacitors, that is, the balancing problem of the electrodes kinetic and capacity, two electrodes are designed and adequately matched. For the anode, we introduced in situ carbon-doped and surface-enriched unsaturated sulfur into the graphene conductive network to prepare transition metal sulfides, which enhances the performance with a faster lithium-ion diffusion and dominant pseudocapacitive energy storage. Therefore, the lithium-ion capacitors anode material delivers a remarkable capacity of 810 mAh∙g–1 after 500 cycles at 1 A∙g–1. On the other hand, the biomass-derived porous carbon as the cathode also displays a superior capacity of 114.2 mAh∙g–1 at 0.1 A∙g–1. Benefitting from the appropriate balance of kinetic and capacity between two electrodes, the lithium-ion capacitors exhibits superior electrochemical performance. The assembled lithium-ion capacitors demonstrate a high energy density of 132.9 Wh∙kg–1 at the power density of 265 W∙kg–1, and 50.0 Wh∙kg–1 even at 26.5 kW∙kg–1. After 10000 cycles at 1 A∙g–1, lithium-ion capacitors still demonstrate the high energy density retention of 81.5%.

关键词: in-situ carbon-doped     surface unsaturated sulfur enriched     pseudocapacitive energy storage     biomass-derived carbon     lithium-ion capacitors    

钾/锰助剂对氮掺杂碳纳米管负载铁基催化剂在CO2加氢过程中的影响研究 Article

Praewpilin Kangvansura, Ly May Chew, Chanapa Kongmark, Phatchada Santawaja, Holger Ruland, Wei Xia, Hans Schulz, Attera Worayingyong, Martin Muhler

《工程(英文)》 2017年 第3卷 第3期   页码 385-392 doi: 10.1016/J.ENG.2017.03.013

摘要:

氮掺杂碳纳米管(NCNTs) 作为载体负载铁(Fe) 纳米颗粒,可应用于CO2多相催化加氢反应(633 K和25 bar)。当将钾(K) 和锰(Mn) 作为助催化剂时,Fe/NCNT 展现出优异的CO2 加氢性能,在体积空速(GHSV) 为3.1 L·(g·h)–1 时转化率可达34.9%。当使用K 作为助催化剂时,反应对烯烃和短链烷烃具有高的选择性。当K 和Mn 同时作为助催化剂时,其催化活性能够稳定地维持60 h。助催化剂Mn 的结构效应通过X 射线衍射、氢气程序升温还原以及近边X 射线吸收精细结构进行表征。助催化剂Mn 不仅能够稳定中间态FeO,且能降低程序升温还原的起始温度。通过探针反应NH3 的催化分解来表征助催化剂效应。当K 和Mn 作为助催化剂时,Fe/NCNT 具有最好的催化活性。在还原条件下,当K 作为助催化剂时,Fe/NCNT 具有最优异的热稳定性。

关键词: CO2 加氢     铁基催化剂     n 型碳纳米管     Mn 助剂     K 助剂    

FeNi doped porous carbon as an efficient catalyst for oxygen evolution reaction

Jun-Wei Zhang, Hang Zhang, Tie-Zhen Ren, Zhong-Yong Yuan, Teresa J. Bandosz

《化学科学与工程前沿(英文)》 2021年 第15卷 第2期   页码 279-287 doi: 10.1007/s11705-020-1965-2

摘要: Polymer-derived porous carbon was used as a support of iron and nickel species with an objective to obtain an efficient oxygen reduction reaction (OER) catalyst. The surface features were extensively characterized using X-ray diffraction, X-ray photoelectron spectroscopy and high-resolution transmission electron microscopy. On FeNi-modified carbon the overpotential for OER was very low (280 mV) and comparable to that on noble metal catalyst IrO . The electrochemical properties have been investigated to reveal the difference between the binary alloy- and single metal-doped carbons. This work demonstrates a significant step for the development of low-cost, environmentally-friendly and highly-efficient OER catalysts.

关键词: OER     polystyrene salt     porous carbon     FeNi alloy     p/n junction    

标题 作者 时间 类型 操作

Concurrent adsorption and reduction of chromium(VI) to chromium(III) using nitrogen-doped porous carbon

期刊论文

Size-controllable synthesis of monodispersed nitrogen-doped carbon nanospheres from polydopamine for

期刊论文

Catalytic fast pyrolysis of walnut shell for alkylphenols production with nitrogen-doped activated carbon

Shanwei Ma, Hang Li, Guan Zhang, Tahir Iqbal, Kai Li, Qiang Lu

期刊论文

Boron and nitrogen co-doped porous carbon derived from sodium alginate enhanced capacitive deionization

期刊论文

Efficient CO

Yanxia Wang, Xiude Hu, Tuo Guo, Jian Hao, Chongdian Si, Qingjie Guo

期刊论文

Efficient removal of Cr(VI) and Pb(II) from aqueous solution by magnetic nitrogen-doped carbon

Wanyue Liu, Xiaoqin Liu, Jinming Chang, Feng Jiang, Shishi Pang, Hejun Gao, Yunwen Liao, Sheng Yu

期刊论文

Construction of nitrogen-doped carbon cladding LiMnO film electrode with enhanced stability for electrochemically

期刊论文

Efficient photodegradation of phenol assisted by persulfate under visible light irradiation via a nitrogen-dopedtitanium-carbon composite

Yan Cui, Zequan Zeng, Jianfeng Zheng, Zhanggen Huang, Jieyang Yang

期刊论文

Nitrogen-doped carbon black supported Pd nanoparticles as an effective catalyst for formic acid electro-oxidation

Na SUN, Minglei WANG, Jinfa CHANG, Junjie GE, Wei XING, Guangjie SHAO

期刊论文

Ultrafine Fe-modulated Ni nanoparticles embedded within nitrogen-doped carbon from Zr-MOFs-confined conversion

期刊论文

Nitrogen-doped graphene approach to enhance the performance of a membraneless enzymatic biofuel cell

Alireza AHMADIAN YAZDI, Jie XU

期刊论文

of halogenated nitrobenzenes over metal–organic-framework-derived ultra-dispersed Ni stabilized by N-dopedcarbon nanoneedles

期刊论文

Carbon-doped surface unsaturated sulfur enriched CoS@rGO aerogel pseudocapacitive anode and biomass-derivedporous carbon cathode for advanced lithium-ion capacitors

期刊论文

钾/锰助剂对氮掺杂碳纳米管负载铁基催化剂在CO2加氢过程中的影响研究

Praewpilin Kangvansura, Ly May Chew, Chanapa Kongmark, Phatchada Santawaja, Holger Ruland, Wei Xia, Hans Schulz, Attera Worayingyong, Martin Muhler

期刊论文

FeNi doped porous carbon as an efficient catalyst for oxygen evolution reaction

Jun-Wei Zhang, Hang Zhang, Tie-Zhen Ren, Zhong-Yong Yuan, Teresa J. Bandosz

期刊论文